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Reopening Communities Affected by COVID-19 is a
Risk Management Issue

Governor Andrew Cuomo, April 15, 2020 NY (D)

‘ ‘It’s over when people know I’m 100% safe and I don’t have to worry about
this. When does that happen? When we have a vaccine...Until you have a
vaccine, until you have the medical treatment, what do you do? How are
you building the bridge? Well, it’s going to be a phased reopening.”

Governor Charlie Baker, April 22, 2020 MA (R)

‘ ‘If we move too quickly, we risk moving the progress that we’ve made so
far... We’ll get through this and we will come out stronger on the other
side but everyone needs to do their part and understand that we need the
facts on the ground to drive our decision making.”

Governor Gavin Newsom, April 15, 2020 CA (D)

‘ ‘Let’s not make the mistake of pulling the plug too early, as much as we all
want to...I don’t want to make a political decision that puts peoples’ lives
at risk and puts the economy at even more risk by extending the period of
time before we can ultimately transition and get people moving again.”

Governor Kim Reynolds, March 25, 2020 IA (R)

‘ ‘While we’ll look at it from a regional perspective and we’ll talk about
collectively the metrics we’re using, each individual governor is going to
look at their own state’s metrics.”

Governor Larry Hogan, March 25, 2020 MD (R)

‘ ‘You can’t put a timeframe on saving people’s lives. We’re going to make
decisions based on the scientists and the facts.”
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Executive Summary
What this Paper Provides

This paper outlines an easy to implement toolbox that clinicians can use to
help develop local risk policies to minimize the total harm from COVID-19.

How to Use this Paper

Use this paper to help develop and evaluate risk stratification policy options:

• input information about a test, model or risk stratification policy rule,
and your assumptions about the community needs and priorities

• receive back a customized risk stratification policy for that community.

Key Points

1. Any policy to risk stratify individual involves implicit or explicit trade-offs, foot-
notee.g., harm to health from infection with COVID-19 vs. harm to health from
economic losses regardless of how risk stratification is done.a

2. Policies can be designed to achieve maximum value for the trade-offs by making
simple calculations, and this analysis provides a coherent, concise communication
tool for and explaining policies to constituencies and the media.

3. Policies can be designed to take advantage of whatever information is available at a
given time, and can incorporate different testing protocols within a single framework
(e.g., virology tests where they are available; age-based criteria when they are not).

a e.g.,using diagnostic test, predictive model, expert judgement, or some other way.

Importantly, clinicians do not need to be mathematicians to use these techniques. The
calculations may be done in a few lines of a spreadsheet or even on a hand calculator.1 Most
of the main content is delivered through real-world examples.

Templates provide guidance on how to make better decisions about reopening economies,
screening patients, and other decisions and policy questions.

A web-based tool for exploring this analysis is publicly available at no charge at:
http://www.rogermstein.com/covid-19-resources/. (see the Quick-reference Guide.)

1 Though not required, mathematical detail and technical references are provided in the Appendices.
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Where to Find Techniques for Some Common Policy Questions

• How can policies be designed to minimize total harm, while also maximizing benefits,
given economic and related health concerns?a

• What are the potential dangers of using risk stratification methods to stage the end
of self-isolation?b

• How do these dangers change if tests and data are less or more reliable?c

• If different regions have different access to different tests, can these be combined
within a single policy?d

• How can risk stratification using a single measure be made more flexible to allow for
prioritization of specific community and economic objectives?e

• Is it worth it to spend extra money on better data or testing, and if it is, how much?f

a By doing a few calculations. See Example 5.
b It varies. See Example 3.
c It can make a BIG difference. See Example 4.
d Often, yes. See Example 8.
e Yes, by adjusting a few numbers for each objective. See Example 7.
f Sometimes. The decision can be explicitly structured however. See Example 6.
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Abstract

The COVID-19 pandemic of 2019 and 2020 has brought to a standstill normal life and
commerce in many parts of the world. This has left clinicians challenged to determine when
and how to return workers to the workforce while also balancing critical public health issues
and minimizing additional harm. A number of recent proposals have suggested using risk
stratification strategies to classify members of the public into “higher” and “lower” risk tiers.
This article describes practical methods for creating risk stratifications using currently available
information which can be updated over time. In this context, we discuss three key observations:
(1) Any policy to risk stratify individuals involves implicit or explicit trade-offs (e.g.,harm from
morbidity/mortality vs. harm from economic impact on health due to self-isolation), regardless
of whether risk is measured using diagnostic tests, predictive models, or expert judgement. (2)
Policies can be designed to minimize the harm caused by such trade-offs and failing to do so
will directly result in unnecessary harm for the population. (3) Policies can be designed to take
advantage of whatever information is available at a given time, and can incorporate different
testing protocols within a single framework (e.g., virology tests where they are available, and
age-based criteria when they are not). We demonstrate each of these points.

We provide a set of simple calculation templates that clinicians can use to discuss risk
stratification policies with the objective of developing Total Harm Minimization policies. We
have also provided a web-based tool-set that implements these methods, and which is available
publicly.

Using these approaches, for example, a policymaker can input assumptions about risk
stratification needs and community priorities, and get as output a risk stratification policy
that minimized health and economic harm, given the community priorities. This allows clini-
cians to assess the advisability of a range of important options for bringing communities back
on-line, as well as for making decisions, such as whether to invest in more accurate tests or
gather more detailed data.

Keywords COVID-19; health policy; health economics; cost-benefit analysis; total harm mini-
mization; base rate; Bayesian probability; ROC analysis
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1 Introduction

At the time of this writing, the vast majority of the U.S. population has been quar-
antined or is under a self-isolation or shelter-in-place order. This is the result of a set
of strategies, implemented at the state level to reduce the immediate transmission of
the novel novel coronavirus, and to slow its progression. In addition to public heath
concerns, a key objective of these strategies is to reduce the risk of overwhelming the
healthcare infrastructure of individual states and cities.

These drastic measures, while showing promise in reducing the spread of COVID-19,
have also had the effect of severely depressed both local and global economies. Further-
more, a number of health advocates have observed that a prolonged period of attenuated
economic and social activity has, itself, the potential to increase substantially negative
health outcomes.

Recent quantitative models have suggested the merits of have advocated performing
“risk stratification” in order to to classify members of the workforce and broader public
into “higher” and “lower” risk tiers, to potentially allow some to return to work in
advance of the introduction of an effective novel novel coronavirus vaccine. Recent
recommendations (see, e.g., Katz et al., 2020; Stein et al., 2020) have also advocated
this strategy.

The basic premise of such proposals is that, at the very least, many “low risk” individuals
would not themselves be at severe health risk, even were they to be exposed to and
contract COVID-19.2

These proposals assert that these “low risk” individuals should return to the workforce
to re-energize the economy and reduce unnecessary harm from the negative health
impacts of self-isolation. Under these proposals, those individuals who are at “high
risk” for severe health outcomes if exposed to the novel coronavirus, in contrast, would
remain in isolation pending the development of widespread screening programs and/or
vaccines that reduce health risks to the levels of more common viral infections such as
seasonal flu.

NY Governor Andrew Cuomo summed-up this concept up succinctly: “Until you have
a vaccine, until you have the medical treatment, what do you do? How are you building
the bridge? Well, it’s going to be a phased reopening.”

It is inevitable that some people who are infected will end up being allowed to “cross
the bridge” too early while some other healthy people will just as inevitably end up
being asked to “stay back” by mistake. In the setting of a pandemic and the resulting
lock-down, there are few easy decisions and there are no attractive options for
managing the risks of infection, on the one hand, and the health and economic conse-

2 There is often discussion as well about the risk to high risk individuals of low-risk individuals transmitting
the disease while themselves showing no or mild symptoms.
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quences of self-isolation and quarantine, on the other.

All options currently before clinicians for managing the COVID-19 lock-
down involve risks that may harm segments of the population. The
charge of clinicians is to minimize this potential harm to the highest
degree possible, given the risks that must be taken. Policy approaches
that do this are called

Total Harm Minimization (THM) strategies.

Most risk stratification approaches to policy rely implicitly on a policymaker’s (PM)
ability to segment individuals into different risk groups using some form of a “test,”
which may be a diagnostic test, a statistical analysis, a heuristic, etc. (see Section 1.1.1
for a discussion of the many forms that such tests may take). For example, a policy
might consider only two risk groups, “high” and “low.” The coarse test might be related
age and medical status: all individuals above the age of 65 with certain comorbidities
would be stratified into the “high risk” group, while those those below 65 or with no
comorbidities would be stratified into the “low risk” group.

Risk-stratification recommendations, by construction, assume the widespread availabil-
ity of some form of diagnostic instrument or predictive model that can be used as a
test to grade the risk of individuals to classify them into risk groups (tiers). As a
matter of practice, any current test criteria that clinicians must use to defining such
stratifications are not perfect, in that the test may erroneously classify some COVID-19
infected individuals as “low risk,” while also erroneously classifying some non-infected
individuals as “high risk.” 3

1.1 Risk stratification

The techniques described in this paper are meant to be applied in cases in which a
policymaker wishes to implement a policy: a set of criteria and a plan for allowing
subsets of individuals, or specific segments of the population, to enter some venue or
to return to some specific activity before an effective COVID-19 vaccination has been
introduced.

Some examples are given below:

3 For example, anecdotal evidence suggests that at the time of this writing, the COVID-19 viral tests that
are used to determine whether an individual is infected or not have a false negative rate of about 15%
meaning that in about 1 out of 7 cases in which an individual is infected, the test will give a negative
result indicating that the patient is healthy.
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Activity/Venue Policy Maker (PM)
◦ End self isolation → National/local officials
◦ Reopen elementary schools → School admins; National/local officials
◦ Enter press conference → Political administration
◦ Enter factory → HR executives; National/local officials

etc. etc.

The goal of a policy is to balance the health risk to the individual and public at
large of contracting and spreading COVID-19, against the health and other risks to the
individual and public at large of reduced economic capacity and other non-COVID-19-
related morbidities that result from keeping individuals isolated unnecessarily.

In forming such policies, clinicians will consider two types of information about how
widespread the COVID-19 is. For questions of capacity, epidemiologists typically con-
sider prevalence which is the current number of active cases or the number of active
cases as of a specific point in time. For considering contagion, the incidence rate
describes the number of new cases that develop during a specific time.

For example, the prevalence of COVID-19 in New York on January 1, 2020 represents
the total proportion of New Yorkers who were sick with COVID-19 in on January, 1,
while the incidence rate of COVID-19 in New York in the month of January describes
the rate at which healthy New Yorkers were contracted COVID-19 during that month.
Prevalence is often useful for considering issues of capacity and health burden, while
the incidence rate describes how quickly COVID-19 is spreading.

1.1.1 Tests and other forms of screening

The techniques we present are designed for cases in which a policy is anticipated to
use some form of test to determine which individuals will be allowed to enter (do) the
target venue (activity) and when. We use the term screening to describe the process
of administering the test and then using the result as a decision criterion.

Tests may take a number of forms. Some examples include:

• A virology diagnostic

• A serology diagnostic

• Heuristics based on Age, travel, comorbidities, etc.

• Predictive analytics based on epidemiological data

• etc.
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Such tests are generally administered at the individual level and the result of a
test applies to an individual.4

Some tests produce binary outcomes while others produce results in a continuous
range of possible outcomes. For example, the answer to a “yes/no” question such as,
“Do you live alone?” is (generally) binary as are certain serology tests, while certain
RNA-based virology test may return the number of amplicons or the viral load, with
higher levels indicating more virus present. Another example of a test with continuous
range outcomes would be the use of Age as a crude “test,” with a different expected
health outcomes associated with ages.

A test result may be delivered in a number of forms. Examples include:5

• RNA concentration level in a specimen

• The presence of IgG antibodies to SARS-CoV-2 in the blood

• Travel to a COVID-19 “hot-spot” within the past two weeks

• Absence of a fever above 98.7◦ F (37.0◦ C)

• An estimate of the probability of current infection

• etc.

In some cases, the preferred test may not be available to all individuals given limited
availability or differences in test protocols at different facilities. This makes it necessary
for a policymaker to integrate different types of tests into a single policy (see, Section
3.4).

There are many forms of risk related to COVID-19 for which a policymaker may wish
to screen in order to implement some form of harm mitigation. Among the risks that
may concern a policymaker may consider are:

• individuals who are currently infected with COVID-19 entering the general pop-
ulation;

• individuals who are more likely to become infected with COVID-19 becoming ex-
posed;

• individuals who might experience more severe prognoses were they to be infected
becoming infected with the coronavirus (e.g., older individuals or those with co-
morbidities);

• individuals who are more likely to transmit COVID-19 if infected, even if they
themselves do not experience severe symptoms circulating in the general popula-
tion;

4 Note that although the results are given at the individual level, it is possible, in some cases, to administer
the test itself to a group by, e.g., pooling individual specimens (see, for example, (Bilder and Tebbs, 2012)).

5 These, and all examples in the paper are provide purely for illustrative purposes.
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• individuals who do not meet the above criteria, being unnecessarily kept from
working and conducting other daily activities;

• etc.

For purposes of our discussions, we generally use examples involving the first and last
risks. For our examples, we primarily assume the goal of the policymaker is to isolate
currently infected individuals and permit uninfected individuals to leave isolation).

However, we do this for exposition not because we suggest this to be or not to be main
purpose of current policies. In fact, the techniques we discuss are quite general and can
be applied to any of the risk stratification problems listed, as well as many others.6

In what follows, we use the term risk to mean the risk of that a policy decision will
cause causing individuals who would otherwise have remained healthy to become
infected with COVID-19. This may be refined, in some settings to contemplate
cases in which the average prognosis for an exposed individual becomes worse as
the result of a policy decision.

An individual may be at risk for infection or at risk because if they were to become
infected, their prognosis would likely be severe, perhaps resulting in significant hos-
pitalization or death. Even if an individual were not personally likely to become
severely ill if exposed to the novel coronavirus, that individual may still put others
at risk if they are likely to spread COVID-19.

In what follows, we use the term harm to mean the consequences of policy decisions
which result in reductions of health and economic security for an individual.

An individual may be harmed if they suffer a reduction in the quality or duration
of their health, as the result of either direct morbidity from COVID-19 or other
conditions resulting from prolonged isolation, the effects of food insecurity, lack of
access to medical services due to high utilization by COVID-19 patients, psycholog-
ical trauma, domestic abuse, and loss of economic security.

1.1.2 Risk stratification systems, staging and test errors

For purposes of policies based on risk stratification, individuals may be grouped into
risk levels (risk tiers) by assigned each individual or group a risk score based on
the results of one or more tests.

6 This is also not intended to imply that each of the challenges (concerns) we listed is equally easy to
analyze. Assessing the impact of transmission by asymptomatic individuals is more complicated than
screening individuals for the presence of the novel coronavirus RNA.
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Each risk tier is defined by a set of criteria based on the results of one or more types
of tests.

Importantly, it is not necessary for the inclusion criteria for a specific risk tier to be
based on a single test, and not all tests must necessarily be required for inclusion in
a specific tier. For example, a coarse “high risk” class might include individuals who
are over 80 years old or have recently come into contact with an individual with a
confirmed case of COVID-19 or who have tested positive for the novel coronavirus.

Risk tiers can be particularly useful for implementing staging strategies, designed to
enable some segments of the population to “enter” earlier, while others do so at later
points. For example, all else equal, individuals in a company that do similar jobs may
be staged such that those who are deemed to be lower risk are the first to return to
work, followed later by those who are deemed to be higher risk.

Risk stratification involves defining one or more cutoffs: threshold values for test
results that determine into which of two adjacent risk tiers a result would place an
individual. Returning to the earlier examples of various forms of test results, we can
see that the criteria implicitly include cutoffs:

Test criterion “high” risk cutoff
RNA concentration in a specimen concentration >x
The presence of IgG antibodies No antibodies found
Travel to a COVID-19 “hot-spot” Two weeks & on “hot-spot” list
Fever body temp >98.8◦ F
A model estimate of a probability of infection probability>1%

Finally, for practical purposes, all tests have some level of test error. An error occurs
when a test result disagrees with the truth. This most often occurs because most
tests cannot be exactly tailored to each individual and may miss key information that
determines an individual’s risk, even if they do identify differences between individuals
along more typical dimensions. In some cases, there may also be instances of testing
error that go undetected.

By convention, we label those test results that erroneously classify a sick person as
healthy, false negatives – high risk individuals who are erroneously stratified as “low
risk” and reenter the general population. These are sometimes called Type I errors.

We label those results that erroneously classify a healthy person as sick false positives
– uninfected or immune individuals who are erroneously classified high risk and thus
prevented from reentering the general population and workforce. These are sometimes
called Type II errors.

We call correct test results the truth, and we label a test result that correctly identifies
a sick individual ”positive,” a true positive, Similarly, we label a result as a true
negative if the test correctly identified an uninfected individual as “negative.”

1.1 Risk stratification 12 of 64



Where to draw the line for risk stratifications / R.M. Stein

Collectively, we call the set of the true negative rates, true positive rates, false negatives
rates, and false positive rates for a test, the test’s performance.

It is worth noting that the terms “negative” and “positive” can sometimes cause confu-
sion. In common usage, we think of negative outcomes as bad and positive outcomes as
good. However, in our context, these terms refer to the outcome of a test for, e.g., the
presence of COVID-19. In this case, if the test “comes back” negative, it means that
no virus was found.

Continuing the “age test criterion” example, a policymaker may conclude that individ-
uals above 40 years old are at higher risk than those at below 40. Indeed, if “Age is
lower than 40 years” were used as a criterion to allow individuals to return to work,
many infections might be avoided (true positive). However, in addition, many healthy
individuals would be unnecessarily kept from returning to work (false positive). Fur-
thermore, some individuals below age 40 will also contract COVID-19, despite passing
through the screening (false negative), thought the many more healthy people would
also correctly be able to return (true negative).

The risk is of infecting ones-self or others others, while the errors are any mis-stratification
of high risk individuals into low risk tier, or the low risk individuals into the high risk
tier. Figure 1 gives an example of how risk and errors related.

For clarity, we distinguish between the risk of COVID-19 infection and transmission,
and the costs of errors that result from imperfect stratification. Costs relate to the
harm caused by a policy with respect to test errors.
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Risk 
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• Error (Type I error)

• False Positive 

• Example: 

Error: Employee is not infected and 
is not at high risk for infection, but 
is not allowed to return to work

Cost: Greater economic and health-
related harm due to lack of food and 
health security, psychological stress, 
etc.

• Truth

• True Positive 

• Example: 

Truth: Employee is infected with 
COVID-19 or is at high risk for 
infection and is not allowed to return
to work.
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• Truth

• True Negative 

• Example: 

Truth: Employee is not infected with  
COVID-19 and is allowed to return 
to work.

• Error (Type II error)

• False Negative 

• Example: 

Error: Employee is infected with 
COVID-19 (or high risk of infection)  
but is  allowed to return to work.

Cost: Employee and others 
experience greater health and 
economic related harm.

Figure 1: An example of the relationship between outcome risk (true outcome) and error (test result)

This table shows both the kinds of errors a diagnostic test may make in the context of COVID-19 screening,
as well as correct (true) test results. Each cell notes whether the outcome is the truth or an error, the name
of the type of error if applicable, and gives an example. An error occurs if when the test result (vertical)
disagrees with the truth (horizontal). Benefits are not shown, though we discus these later on.
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Returning again to the example of the “age test criterion,”

• The “errors” would be the mis-classifications (mis-stratifications) of high and low
risk individuals (e.g., under-40-year-olds who actually are or become infected and
gravely ill: false true negatives; and uninfected over-40-year-olds who are asked
to continue self-isolating: false positives).

• The “costs” would be the harm that results from the mis-classifications (e.g.,
additional infections to others increasing morbidity and mortality from COVID-
19; and additional health and financial problems due to extended self-isolation
and economic loss, respectively).

The cells of Figure 1 give examples of the the costs of each type of error. (Also see
Section 4.)

Note that later on, we will also discuss benefits that may be associated with correct
classifications in the same way that costs are associated with errors.

1.2 Trade-offs in risk stratification: Painful questions and lim-
ited data

Implicit in any risk stratification proposal is an acceptance that there will be some
number false negatives and that there will also be some number of false positives.

A common question that clinicians struggle with is therefore:

What level of health and economic of risk is acceptable?

Said differently, one may ask:

How should a policymaker determine what level of risk is “too high,” given the needs of
their community?

Determining such a cutoff (e.g., everyone under the age of 65 with no preexisting con-
ditions may return to work) requires consideration of a number of factors relating to
the overall risk and severity of infection:
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• the costs to the healthcare system (in both financial and health terms) implied
by severe infections;

• the benefits of workers returning to work;

• the costs (in both financial and health terms) of individuals remaining in isolation;

• the error rate of whatever test is used;

• the speed at which COVID-19 is spreading;

• etc.

These factors are often hard to assess, and the data available to clinicians is often
limited, noisy, inconsistent, and anecdotal. However, regardless of whether a policy
is explicit in how it trades off these factors or is silent, and regardless of whether
the policymaker introduces them them deliberately or incidentally, these trade-offs are
present and can often be inferred by observers simply by using public data.

Policy makers evaluate such trade-offs routinely.

Example 1. Routine trade-offs in policy

The U.S. FDA approves a drug’s safety based on its analysts judgement that the
adverse effects of the drug are outweighed by the benefits to the patients that respond
well (as supported by data from clinical trials).

In general, this is the case. However, many patients are still harmed by these drugs.
The The Agency For Healthcare Research and Quality, which is part of the US HHS,
estimates that in 2017, there were over 720,000 adverse drug events while patients
were under close medical supervision within a hospital (AHQR, 2019). This does not
include the adverse drug reactions that non-hospitalized individuals experienced. In
2017, adverse drug reactions accounted for about 3% of all visits to hospital emergency
departments (Rui and Kang, 2018).

The experience of clinicians with drug approvals is not intended as a normative obser-
vation.7 Rather, it is serves to highlight that much of policy making involves risk man-
agement, that risk management involves trade-offs, and thus trade-offs are inevitable
in policy making.

Despite this, a policymaker’s constituents may have little transparency into or appre-
ciation of what these trade offs involve, or how they are determined.

7 To the contrary: The Agency for Healthcare Research and Quality has instituted a program to aggressively
reduce ADRs through a number of initiatives, including more transparent reporting and data collection.
The incidence of ADRs declined by 25% between, 2010 and 2016.
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The techniques that follow can also provide a language for communi-
cating to constituents, rather than leaving the interpretation of policy
priorities to community members,policymaker who may have less con-
text than the policymaker.

1.3 An approach to making flexible, rational decisions with in-
complete data and tools

clinicians are charged with responding quickly in crisis situations. Their charge requires
them to use of whatever data and tests are available, regardless of the quality. In this
context, it is logical that a policymaker should use these data and tests to minimize
the total harm caused by imperfect information when determining how best to make
required trade-offs.

A policymaker should seek to minimize the total harm the the highest
degree possible for the incidental risk that accompanies the use of im-
perfect test, criteria and data.

Example 2. How not to choose an irrational policy

Imagine that a policymaker is asked to determine a policy for determining which
individuals will be able to return immediately to their jobs and which individuals will
remain in isolation. The definition of such a policy involves a trade-off between the
benefits to workers of workers returning to the workforce, on the one hand, and the
costs of the harm harm that will result from some of those workers becoming infected
or infecting coworkers, on the other.

The policymaker is considering three policy proposals. Each policy will return some
workers to the workforce, but will also l also likely create additional harm by causing
an increase in COVID-19 cases in the community, because to some of the infected
workers will not be screened out due to test error.

For simplicity at this point, we assume that the only information that the policymaker
has to inform this decision relates to the number of cases of COVID-19 that each policy
is likely to produce due to test error and the number of workers that will be permitted
to return to work.
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Expected # Expected #
employees additional cases

back to work of COVID-19
Plan A 15,000 500
Plan B 10,000 500
Plan C 15,000 400

The three proposals listed above are the policy choices plans available to the PM.

Under any state of the world, the PM should prefer Plan A to Plan B (assuming he
wishes to maximize the number of employees returning to the workforce and minimize
the number of additional COVID-19 infections).

He would deliver more benefit with Plan A, for the same cost of additional harm.
(More benefit, same cost.)

By similar reasoning, the PM should prefer Plan C even more than Plan A: Plan C
gives the same benefit as Plan A, but with lower cost. (Same benefit, less cost.)

In this case, these preferences will hold regardless of how he values the harm of ad-
ditional COVID-19 cases relative to the benefit of additional employees returning to
work.8

If these were the only factors in his decision, it would be irrational to choose any plan
other than Plan C. ♦

In what follows, we discuss issues related to choosing policies when errors in risk strat-
ification are to be expected due to imperfect information and imperfect tests.

We examine

• the impact of the error rate of a diagnostic instrument on the real-world population
of COVID-19 susceptible individuals; and

• the potential impacts on policy evaluation that data and risk stratification errors
may precipitate; and

• a set of methods for evaluating potential policies that are designed to minimize
the total harm to the population, given the economic, social and health costs and
benefits.

The specific costs of different types of errors (infected employees returning to work
or healthy employees being asked not to), and benefits of true test results (economic
security, access to services, social well being; mitigating the spread of COVID-19) will
vary greatly across communities and domiciles. We are not qualified to opine on these
quantities, and do not address their determination in this paper.

8 This ignores in the improbable case that he views the harm as irrelevant.
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However, the leadership of a community (country, state, city, firm) is well positioned to
opine on these topics. Assuming that leaders are able to determine, even in broad terms,
these factors and costs, the techniques we describe can provide them with a mechanism
for choosing the “best” risk tiers and cutoffs in order to minimize total harm.

To be useful, these methods must be accessible. To make this paper accessible, most of
the main body of each section is given over to examples, rather than detailed mathemat-
ical derivations. (However, for those interested in the technical details, more in-depth
mathematical results are available in the Appendices.)

This paper is not intended be theoretical. It is meant to be used by non-
mathematicians. To that end, most of the main results may be calculated
on a hand calculator or in a few cells of a spreadsheet.

In many cases the results may also be calculated online at no charge at:
http://www.rogermstein.com/covid-19-resources/
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The remainder of this paper is organized as follows:

The Organization of the Paper

• Section 2 (the next section) discusses the policy implications of model and
test error and of sparse or unreliable data. Some of these implications are
surprising to readers not familiar with probability theory, but are nonetheless
directly relevant to the issues that can arise, even when a test has a high
reported accuracy, as well as some potential solutions.

• Section 3 describes how a policymaker can use even imperfect tests and data to
determine risk stratification policies, given a set of priorities, costs, and benefits.
This section is divided into a number of sub-sections, that demonstrate:

– how to coherently incorporate different decisions and priorities into a pol-
icy;

– how observers can infer a policy’s trade-offs by examining the policy and
doing a few calculations;

– how clinicians can assess whether more expensive or extensive tests or data
collection efforts are justified and, if so, what their impact could be;

– how to create flexible risk stratification policies to adjust for different
priorities and community objectives

– how to tailor such policies to different groups by considering things like
the criticality of an individual’s job function or the risk of harm that their
return to the workforce may pose to the community or to themselves.

– how to incorporate tests given to different individuals, using different test-
ing tools, can be coherently incorporated into a single consistent policy.

• Section 4 discusses some implications of the results, and also discusses:

– some of the challenges in developing local cost and benefit assessments;
– how more advanced, flexible and efficient risk stratification policies may

be constructed;

• For those who are interested, a number of technical Appendices provide math-
ematical details that are used in the main paper, including the main formulae.
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2 Risk policy in an imperfect world: Bad options +
Rational Analysis = Total Harm Minimization

Consider a test that produces a score: HIGH or LOW, indicating that an individual is
either in a “high” or “low” risk tier, respectively, for serious COVID-19 morbidity. This
test could be a medical diagnostic, a simple rule (e.g., everyone over 65 is at high risk),
the prediction of a machine learning algorithm, etc.

If the test were perfect, then given a risk score of HIGH, the probability of actually
belonging to the high risk tier9 would be 1.0. Similarly, for a risk score of LOW, the
probability of belonging to the low risk tier10 would be 1.0 as well. In this idyllic
setting, there would be no model error and every high risk individual tested would be
stratified into HIGH category and every low risk individual tested would be stratified
into LOW.

However, if the risk scoring system were not perfect, then the probability of being at
high risk, given a score of HIGH, would not be 1.0 and/or the probability of being low
risk, given a score of LOW, would not be 1.0. Furthermore, for an imperfect scoring
system, the probability of getting a score of HIGH if the disease were actually present
may also not be 1.0, so some results would not correctly stratify individuals into their
appropriate risk tier.

The probability of getting a correct test result of HIGH, when the subject is indeed at
high risk is the true positive rate. The probability of getting an incorrect test result
of HIGH, when the subject is really at low risk, is the false positive rate (or the
Type I error rate). We can define the true negative rate and false negative rate
(or the Type II error rate) in the same way. In what follows, we label these T P,
FP, T N and FN , respectively.11 The next example shows how these rates affect risk
stratification.

9 i.e., p(H | HIGH).

10 i.e., p(L | LOW).

11 Note also that it is not necessary to explicitly specify all of the accuracy and error rates, because of the
following identities:

T P = 1− FN (1)

T N = 1− FP (2)

FP = 1− TN (3)

FN = 1− T P (4)
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Example 3. How many infected reporters get into a press briefing?
Imagine that a policymaker were worried about infected reporters spreading the novel
coronavirus at a press conference, but she also worried about restricting reporters’
access to the press conference.

The policymaker might consider screening each reporter as they enter the briefing
room. In this case, we would be concerned about infected individuals entering the
briefing room and possibly infecting others.

Using either Equation (B.1) or Equation (C.8), we can calculate the expected number
of infected reporters who will enter the briefing room after being screened.

Assume for purposes of this example that

• the test is 97% effective at detecting COVID-19 when an individual is infected;

• the test is 90% effective at detecting the absence of an infection when an individual is
not infected; and

• the prevalence of active infections is 20% at the time of the briefing.

If the press corps for the briefing includes 300 reporters then we have:

nT = 300 (the number screened)
T P = 0.97 (true positive rate)
T N = 0.90 (true negative rate)
FP = 0.10 (false positive rate)
FN = 0.03 (false negative rate)

p(COVID-19) = 0.20 (prevalence of COVID-19)

With this information, we can calculate the expected outcomes of the testing using
only counting and basic arithmetic:

nCnCnC = 606060 (# with COVID-19) ≡ p(COVID-19)× nT = 0.2× 300

nWnWnW = 240240240 (# who are well) = nT − nC = 300− 60

nNnNnN = 218218218 (# negative results) = FN (nC) + T N (nW) = 0.03(60) + 0.9(240)

nPnPnP = 828282 (# positive results) = nT − nN = 300− 218

nWNnWNnWN = 216216216 (# true negatives) = T N × nN = 0.90× 240

nCPnCPnCP ≈ 585858 (# true positives) ≈ T P × nC = 0.97× 60

nCNnCNnCN ≈ 222 (# false negatives) ≈ nC − nCP ≈ 60− 58

nWPnWPnWP ≈ 242424 (# false positives) ≈ nN − nCP ≈ 240− 216.

Thus, a total of 240 reporters would test negative and be admitted to the press briefing
(nN ). Within this group, about 2 reporters would be infected with novel coronavirus
and presumably contagious (false negatives, (nCP). In addition, 24 reporters, who
should have been permitted to participate, would be excluded (false positives, nWP).
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To rely on this test, given the conditions at the time, the administration would need to
be comfortable trading off the “cost” both of allowing 2 infected reporters to circulate
among the press corps and leadership, while also excluding 24 reporters who should
have been allowed to participate, in exchange for the benefit of preventing another 58
infected reporters from participating.12 ♦

Application Template - Estimating the number of infected people
erroneously cleared using a specific test for screening

All calculations may be done on a hand calculator or simple spreadsheet. Example 3
can be used as a template.

Input: Test accuracy
prevalence of COVID-19

Result: Expected number of infected individuals missed
Expected number of uninfected denied

2.1 Model error, data error, and risky risk-stratification policy

Up until this point, we have assumed that the population prevalence was known. How-
ever, it could be the case that prevalence rate is different from the estimate that the
administration used for screening. This would be the case if, for example, the incidence
rate were estimated using only patients that presented at hospitals and requested a
test, but who were only tested if they were symptomatic.

In the case of COVID-19, it has been suggested that asymptomatic patients may also be
contagious. However, due to shortages in testing, these asymptomatic patients would
not have been unlikely to present at hospitals for testing, and their cases would not be
counted in calculating the prevalence, so the population estimate of the prevalence of
COVID-19 would be understated.13

12 It could be the case, however, that clinicians are more concerned about COVID-19 cases that will become
severe and require hospitalization than about COVID-19 cases that are likely to be mild. In this case,
we may apply Equation (B.2 to combine the probability of contracting COVID-19 with the probability
of requiring hospitalization given contracting COVID-19, and proceed as before, but now including the
error rates for the model (or other stratification approach) used to stratify the risk that a COVID-19
patient will require hospitalization.

13 This would also affect probability estimates from statistical models, such as those developed by applying
machine learning algorithms to data collected on recorded COVID0-19 cases or on patients hospitalized
for COVID-19. The next example demonstrates this.
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2.2 What does a positive test result really mean?

To motivate this next section, imagine that there is a condition that has an incidence
rate of zero among some subset of the population. For our purposes, we consider
prostate cancer as the condition, and female individuals as the subset.14

Imagine further that there is a diagnostic blood test for this condition that is very, very
accurate at detecting the disease, i.e., has a very low false positive rate (e.g., a Type II
error rate of 0.01% or less than one false positive per 10,000 tests. Thus, the probability
a subject with prostate cancer of receiving a positive result is 1-0.01% = 99.99%).

If the test were given to a female individual, even considering the very low Type II
error, there is still a small chance that this particular test will return a result that is
positive positive.

In this case, even the subject received a positive result, and even though the tests is
99.99% “accurate,” we would still know that the probability that the subject in fact
had prostate cancer, would be zero. In fact, regardless of how many female individuals
tested positive, we would always know that their probability of having prostate cancer
is zero because the overall population prevalence among the female population for that
condition is zero. Female individuals do not have prostates.

If instead there were another condition that were slightly more common among the
female population (e.g. the condition was very rare, but still occurred occasionally, say
1 case per 1000 individuals), a positive test result for a female individual would still be
surprising, and although we would no longer think that the probability of the individual
having this condition were zero, we might suspect that it was still very low.

Finally, if the incidence rate across all sexes were equally likely, and a very accurate
test returned a positive result, we might become more concerned.

Note that in each of the preceding cases, the error rate of the test remained the same.
However, our intuition about what a positive result implied changed based on our sense
of the probability of an individual ever having the disease. The less likely this were,
the less likely we were to accept a negative result as truth.

On the other hand, imagine that we were considering a test result for a very common
disease, but that the test itself had a very high Type II error (FP is large) and frequently
produced many alarms. In this case, again, we might be cautious in interpreting a
positive test result, given the high levels of test error.

14 Some of the particulars of hypothetical narrative, not necessarily accord with the pathology of prostate
cancer. We ignore this for exposition.
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The observation that the probability of an individual acquiring a disease impacts
the interpretation of test results error rates explains why it is so challenging for
clinicians to develop policies for public health without adequate prevalence data,
on the one hand, or to implement policies without accurate tests, on the other.

2.3 Adjusting test results as better data comes in

The actual probability, given a positive test result, that a patient has contracted a
disease like COVID-19 is a simple form of risk stratification.

We argued informally in the last section that even with a positive test result, the
reliability of the stratification is still a function both the error of the test (the and the
prevalence (or incidence rate, depending on context) of COVID-19.

However, it is generally understood that, for a variety of reasons (including shortages
in test kits and selection bias in testing), data on the true prevalence of COVID-19
is of poor quality and incomplete, likely understating the true prevalence of the virus
among the population.15 In cases where the data used to estimate the prevalence of a
disease is of poor quality, this uncertainty may critically affect the effectiveness of risk
stratification.

We can make our earlier intuition more formal (see, Appendix C). Doing so results in
a simple adjustment that we can make to a test result, as new data comes in about
infection rates, etc.

The probability transformation converts a “bad” estimate of the probability of having
COVID-19 given a positive test result (such as an estimate that was made using a
“bad” estimate of the COVID-19 prevalence) into a more accurate real-world estimate
of having COVID-19. This allows clinicians to begin risk stratification using the best
estimate available of the real-world prevalence, but to continually update their policy
guidelines in a consistent fashion as new information comes in.16

15 A recent study reported by Andrew Cuomo, the Governor of New York, supports this understanding.
The study randomly tested 3,000 New Yorkers across the state, and found that 13.9% of them had signs
of the virus, which is about ten times higher than prior estimates, which were based primarily on patients
presenting with symptoms (LaVito et al., 2020).

16 While this specific adjustment works in some settings, it is not appropriate in many others. See important
caveats discussed in Appendix C.
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Example 4. How many infected reporters really get into the press
briefing?

Using Equation (C.2) (or Equation Equation (C.8)), we return to Example 3, which
involved using a test with known accuracy to screen reporters for COVID-19 prior to
allowing them to enter an official press briefing.

Recall that the hypothetical the press corps for the briefing includes 300 reporters and
the test accuracy is:

nT = 300

T P = 0.97

T N = 0.90

FP = 0.10

FN = 0.03.

If the true prevalence were → 20% 30% 40% 50% 60% 70% 80%
(A) (B) (C) (D) (E) (F) (G)

Individuals allowed in/barred
Total admitted 217.8 191.7 165.6 139.5 113.4 87.3 61.2

Total barred 82.2 108.3 134.4 160.5 186.6 212.7 238.8
Wrongly barred 24.0 21.0 18.0 15.0 12.0 9.0 6.0

Contagious people allowed in 1.8 2.7 3.6 4.5 5.4 6.3 7.2

True risk after screening
Chance of COVID-19 if admitted 0.8% 1.4% 2.2% 3.2% 4.8% 7.2% 11.8%

Chance of no COVID-19 if barred 11.0% 11.0% 10.9% 10.8% 10.6% 10.3% 9.8%

Table 1: The impact of test error varies greatly with the assumptions/data on the true prevalence

This table compares various measures of risk in Example 4, given dif-
ferent COVID-19 prevalence. For this example, we assume that 300
reporters are seeking entry into an official press briefing. In order to
enter the press room, a reporter must be screened using a test with the
following performance: of T P = 0.97, T N = 0.9. However, we assume
that the observed prevalence is unknown, due to a lack of testing kits.
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This time, however, we assume that the policymaker believes that the
data that has been collected on the prevalence of COVID-19 is currently
unreliable, due to under-sampling. She she wishes to understand how
her policies would will be impacted if the prevalence is higher than the
current assumptions.

As before, the administration screens each reporter and, based on the test
result, admits or denies access to the reporter based on the outcome of
the testing. However, now we examine the realized outcomes, given dif-
ferent levels of the unknown prevalence rate (which actually still remains
uncertain as of the date of this writing).

The results of this sensitivity analysis are shown in Table 1.

From the table, it is clear that the increase in prevalence leads to an
increase in the number of individuals erroneously admitted to the press
conference. For example, recall from Example 3 that screening with the
diagnostic test would result in about two infected reporters being admit-
ted into the press room if the real prevalence were 20%. This is roughly
equivalent to one infected reporter out of every 121.

In contrast, that would rise to about 7 infected reporters erroneously
admitted if the prevalence were 80% (column (G)). Because fewer non-
infected reporters are admitted when the prevalence is higher, this would
be roughly equivalent to one infected reporter every 9 seats. Furthermore,
the realized error rate increases at an increasing rate in the prevalence.

Similar behavior occurs for non-infected population, but inversely. When
the prevalence is 20%, 24 out of the 82 reporters denied access should not
have been, or about 1 out of every 3.5 or so barred reporters (column (A)).
This compares to only about 6 out of about 239, or only about 1 out of
every 40 reporters barred wrongly (column (G)) when prevalence is 80%.

Figure 2 shows these relationships graphically. ♦

In evaluating Table 1 and Figure 2 from Example 4, we observed that given a fixed
test error rate, the number of infected individuals admitted is proportional to the real
prevalence in the population, while the number of individuals wrongly barred is inversely
proportional.

There are two ways that we can think about the results in Example 4. On the one
hand, Table 1 emphasizes how important accurate data on prevalence is for making
sound decisions. In the example, using the same test, say the real prevalence were
50% rather than the 20% we assumed in the first example. In that case, rather than
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Figure 2: The impact of test error varies greatly with the assumptions/data on the true prevalence

This figure shows the impact of differing prevalences (x-axis) on the percentage of infected
individuals allowed to enter and the percentage of uninfected individuals wrongly prevented
from entering (y-axis), using a test with fixed error rate. For this example, we assume that
300 reporters are seeking entry into a press briefing. In order to enter the press room, a
reporter must be screened using a test performance of T P = 0.97, T N = 0.9. However, we
assume that the observed prevalence is unknown, due to a lack of testing kits. (See: Table 1).
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erroneously admitting one infected individual for every 121 or so reporters, the policy
would allow one infected individual in for every 30.

Another way to think about these results is to use these insights, and the recognition
that information on prevalence will be updated from time to time as data collection and
testing become more common. In this case, test results for individuals, or test thresh-
olds for communities or sub-populations, could be updated dynamically to reflect the
most current information available.

Application Template - Updating individual/group risk or updating
policy thresholds based on new or localized data

All calculations may be done on a hand calculator or simple spreadsheet. Example 4
can be used as a template.

Example applications:

• Updating individuals’ test results as new prevalence (or incidence) information
becomes available in real-time.

• Use their policymaker’s specific knowledge or assumptions about local preva-
lence to interpret general test results for policy purposes.

• Adjust risk cutoffs dynamically for communities or sub-populations as new data
arrives.

Input: Test result (described as a probability)
Initial estimate of COVID-19 prevalence
(or incidence rate, depending on application)
Updated (or local) COVID-19 prevalence or incidence rate

Result: Updated estimate of probability of having the condition

2.3 Adjusting test results as better data comes in 29 of 64



Where to draw the line for risk stratifications / R.M. Stein

3 Setting policy cutoffs to minimize total harm

Although clinicians can update their assumptions about or information on preva-
lence or incidence rates, they have little control over the actual levels. This is also
true of the accuracy of a given test.

However, clinicians do have control over how tests are applied and test results are
interpreted for policy purposes.

For example, a very basic risk stratification approach might be to simply use a person’s
age as an indicator of risk. Age is continuous, and there is no natural point at which
crossing over a given age threshold makes someone suddenly much older (or riskier)
than they were the day before.17

In such settings, the policymaker may choose a cutoff score, above which a test subject
would be considered to be “high risk” and below which she would be considered “low
risk.”

For a test with given performance, it is this cutoff that determines the false negative
and false positive error rates, FN and FP.

As another example, consider that if all scores were deemed by the policymaker to be
“high risk” (the “EVERYONE-IS-HIGH-RISK” policy) there could be no false negatives
(FN = 0), since there would be no negatives. Similarly if all scores were considered by
the policymaker to be “low risk” (the EVERYONE-IS-LOW-RISK policy), there could
be no false positives (FP = 0), since there would be no positives, and everyone would
pass the screening.

Were a policymaker to believe that even a single false negative (an infected individual
admitted into the public) were untenable, he would be forced to adopt the EVERYONE-
IS-HIGH-RISK policy. Similarly, were the policymaker to believe that even a single un-
fairly barred individual would be unacceptable, he be forced to choose the EVERYONE-
IS-LOW-RISK policy.

In general, there are costs to mistakes, both false positives and false negatives.

• Most clinicians would reject the EVERYONE-IS-HIGH-RISK policy, due to the
unacceptably high cost to the health and economics of uninfected people forced
to stay home.

• Most clinicians would similarly reject the EVERYONE-IS-LOW-RISK policy be-
cause the cost to public health of widespread COVID-19 infections would be too

17 The current discussion of age buckets such as “65 and over” is more reflective of the manner in which
data is collected and reported, than of some natural measure of overall health or susceptibility.
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high, both in terms of lives lost (especially given finite health system capacity)
and in terms of the social and economic disruption that would result.

This means that most policies will not be all-or-nothing strategies, and will necessarily
involve a trade-off between

(a) the benefits of allowing some lower risk individuals to return to the workforce
and general public, while preventing some higher risk ones from doing so, and

(b) the costs of erroneously allowing some infected individuals to enter the workforce
and general public, while also erroneously preventing some uninfected members
from entering.

We generalize this notion in what we call:

The Law of Risk-Based Decision Making

Any policy based on less than perfect risk stratification, will involve trading off
competing objectives involving harm in one form or another.

Although this “law” seems obvious, a surprising number of policies avoid any discussion
of these trade-offs explicitly. In the particular case of COVID-19, the Law of Risk-Based
Decision Making implies:

Until an effective COVID-19 vaccine is available widely, any policy for
returning workers to the workforce that is based on risk stratification
must involve trading off the cost of infecting more individuals, some of
whom will die, against the costs of lost economic activity, food insecurity,
and health insecurity, and unemployment.

This does not imply that policy cannot proceed unless models are perfect. Rather,
it implies that clinicians can explicitly develop policies that cause the least harm by
determining how best to stratify risk, and how to subsequently select cutoffs for risk
tiers. Given the imperfect nature of the information and tests that form the basis of
policy decisions, if a PM does not choose a policy that minimizes harm, conversely, any
alternative policy is causing unnecessary harm.

3.1 Setting a policy cutoff

In its most fundamental form, harm “minimization” involves setting cutoffs for defining
the risk tiers that achieve the best possible trade-offs, given the current error rates of
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diagnostic tools and models and data available, and the expected costs and benefits of
errors and good risk stratifications, respectively.

We will assume that there is a set of benefits and costs that a policymaker can calculate,
at least approximately. The costs represent the real-world harm that errors in assess-
ing an individual’s risk incorrectly, while the benefits represent the positive outcomes
associated with correct assessments.

Imagine that a policy there is a test that produces a score for each individual ranging
from s1 (“lowest risk”) through sK (“highest risk”). This score could be the propensity
score of a machine learning algorithm or the concentration level of SARS-CoV-2 RNA
(cp/µL) detected using an assay or a medical authority’s assessment of at what age
morbidity increases significantly for those exposed to the novel coronavirus, etc.

The abstract goal of the policymaker is to determine which score cutoff to use for
stratifying the risk of the individuals into “high risk” (scores worse than the cutoff)
and “low risk” (scores equal to or better than than the cutoff). Because the test is
not perfect, any cutoff selected other than will result in some errors. If a policymaker
chooses the kth score as the cutoff, then the corresponding performance measures would
be T N k, T Pk,FN k and FPk.

If the policymaker has an estimate of the prevalence, then, given this information
(performance at the cutoff, costs, benefits and prevalence), we can calculate the total
value, Vk, of a policy that uses this test and sets the cutoff at score sk. (see: Appendix
A).

It turns out that Vk is simply the weighted net value of two trade-offs: a correct vs. an
incorrect classification of a test result as low risk; and the weighted value of a correct
vs. incorrect classification of an individual as high risk. The weighting is done based
on the prevalence and the probability of being correct or incorrect, which depends on
the model accuracy (T Pk, etc.).

The goal of the policymaker can now be seen more concretely as to maximize the value
of the policy, which will minimize unnecessary harm. This is done by selecting a cutoff
that results in the largest value of Vk.

In practice, there are a number of approaches for maximizing Vk.18

For many real world problems involving risk stratification objectives that may have a
variety of attributes, it is sometimes convenient to simply calculate T Pk,FPk, etc. for
a range of k values, and to then use the cutoff that results in the maximum value of
Vk.19

18 See, Stein (2005) for details.

19 The Risk Stratification Workbench app does this type of calculation automatically. See Appendix E

3.1 Setting a policy cutoff 32 of 64



Where to draw the line for risk stratifications / R.M. Stein

The following example shows an application of this approach.

Example 5. Which screening threshold to use for entry to the press
briefing?

Imagine now that a new COVID-19 test is developed and has the performance shown
in Table 2, and that the administration now wishes to use this new test to determine
which reporters are permitted to enter a press briefing.

Risk level sκsκsκ T PT PT P FPFPFP
Lowest Risk R1 99% 62%

· R2 99% 49%
· R3 98% 20%
· R4 96% 14%
· R5 91% 10%
· R6 85% 8%

Highest Risk R7 65% 4%

Table 2: Performance of hypothetical COVID-19 diagnostic tool

This table shows the hypothetical performance of a new test (e.g, an
assay, a data-driven predictive model, etc.) for screening individuals
in order to stratify them into risk tiers, based on the likelihood that
they are infected. T P,FP are true positive (correct high risk) and
false positive (low risk that is erroneously stratified as high risk) rates,
respectively. sκ is the candidate cutoff.

The test results take the form of one of seven risk scores R1 through R7 with R1 being
the lowest risk and R7 being the highest risk. The last two columns of the table show
the accuracy of the test at identifying infected and non-infected individuals, T P and
FP, respectively, if the individuals were split into two risk tiers using that risk score.

This information can also be presented in the form of an ROC curve, as shown
in Figure 3. An ROC (receiver operator characteristic) curve is an analytic tool for
evaluating diagnostic and decision tools (e.g., Green and Sweats, 1966; Provost and
Fawcett, 2001). An ROC curve plots a diagnostic tool’s Type II error (false positive
rate) on the x-axis error against one minus the Type I error (1-FN= T P, the true
positive rate). In the case of novel coronavirus detection, an ROC curve describes
the percentage of non-infected individuals tested that will be inadvertently stratified
as high risk, given each possible cutoff k, in order to correctly screen out a specific
percentage of infected individuals when using a specific test.

In general, the better a test is at differentiating between infected and virus-free
individuals, the farther up and to the left the curve will be placed. If one test’s ROC
is above that of another test’s at every point, then there are no situations in which
using the diagnostic with the lower ROC will result in better decisions than using
the diagnostic with the higher one ROC. The 45◦ line represents the ROC curve for
a random decision tool. since the tool is effectively not providing any information (to
eliminate y% of the COVID-19 cases, one must also eliminate y of the non-COVID-19
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cases; i.e., using the random test, the only way to block y of the infected individuals
is to just eliminate y of all individuals.

We have annotated Figure 3, to identify where on the ROC curve for the new COVID-
19 test, each of the risk scores falls. For example, we can see from the figure that
setting a cutoff at risk score R7 would screen out 65% of the infected individuals
tested, but at the cost of erroneously mis-classifying 4% of the virus-free individuals,
and calling them high risk.

In order to choose a cutoff for admitting or barring individuals, the policymaker
must determine how best to trade off the effects of the errors. For example, if the
policymaker believed that it was much, much worse to have an infected individual
enter the press conference than to wrongly deny a virus-free reporter access, she
might choose to use risk class R1 as a cutoff, since doing so would ensure that almost
all infected individuals would be screened out, albeit at the cost of unfairly denying
more than 60% of all reporters access.

In order to determine the “best” cutoff the policymaker explicitly assigns costs and
benefits to the errors and correct stratifications, respectively:

cFN = 20 ≡ cost of false negative (infected allowed in)
bT P = 0 ≡ benefit of true positive (correctly stopped infected)
cFP = 4 ≡ cost of false positive (non-infected is kept out)
bT N = 3 ≡ benefit of true negative (non-infected allowed in)
pC = 20% ≡ probability of COVID-19 (prevalence)%

Using this set of assumptions, the policymaker can now apply Equation (A.1) to the
compute the value of of a policy that would use that each. Table 3 shows the results
of this analysis. In the table, Vk represents the value of a policy that allows all indi-
viduals with risk scores equal to or better (lower risk) than the corresponding score
to return to work, while barring all of those with worse scores than the corresponding
score.

Score (sκ)(sκ)(sκ) VkVkVk Decision
Lowest Risk R1 -1.11 OK

· R2 -0.40 OK
· R3 1.20 OK
· R4 1.46 OK
· R5 1.48 OK
· R6 1.35 NOT CLEARED

Highest Risk R7 0.78 NOT CLEARED

Table 3: Risk stratification by a hypothetical test and associated “values” (Equation (A.1))

Based on this analysis, the policymaker would choose to use risk score R5 as a cutoff
since this score maximizes the benefit with the lowest costs.
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Figure 3: ROC curve for test performance in Table 2

This figure an provides an example of an ROC plot. The x-axis is the
Type II error (FP) as a percentage of all non-infected individuals. The
higher the error rate, the larger percentage of non-infected individuals
is excluded unintentionally. The y-axis shows the T P: the percentage
of infected individuals that is correctly screened out at a given cutoff.
The points on the ROC are labeled to correspond to the error rates
associated with each risk stratification level from the least risky
(the smallest percentage of infected individuals missed) at R1 to the
most risky, R7, which screens out the smallest percentage of infected
individuals out (See: Table 2).

Said differently, using this test, there is no other risk score that would have as high
a benefit (allowing reporters into the press conference) at a lower risk or, conversely,
that would minimize the risk more for the same number of reporters admitted. ♦
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Application Template - Determining a risk stratification policy
(Basic)

All calculations may be done on a hand calculator or simple spreadsheet. Example 5
can be used as a template.

The basic strategy assumes a single cutoff for the entire population that is chosen
to minimize total harm to the community (maximize the value of the policy), given
the community priorities, needs, costs and objectives.

Input: Test accuracy
prevalence of COVID-19
Cost of T N and FP based on community objectives, economy and needs
Benefit of T P based on community objectives, economy and needs

Result: Risk stratification threshold (cutoff) that optimizes community objectives

3.2 Costs, benefits, and the Law of Risk-Based Decision Making

In setting up Example 5, we implicitly assumed that a policymaker would be com-
fortable making trade-offs among competing outcomes and the errors that accompany
them. Is this reasonable?

The short answer in many cases is “No.” Most people are, in fact, extremely uncom-
fortable considering trade-offs such as “How many long machinists will I bring back to
work if the expected harm is that an additional 55 year old individual will need to be
admitted to ICU for a month?”

However, whether a policymaker is comfortable with such a trade-off or not, The Law
of Risk-Based Decision Making ensure that any policy that relies on risk stratification
and screening using a test (assay, algorithm, age-based heuristic, etc.) that has error
rates greater than zero, is making trade-offs, regardless of whether the PM evaluates
these trade-offs explicitly or not.

Importantly, in addition to depending on the accuracy of the diagnostic, the risk strat-
ification cutoff will also depend on the prevalence in the target population, and the
various costs and benefits assigned to different errors and correct predictions. Table 4
demonstrates this by calculating the best cutoff using the same model as described in
Examples 3 - 5, but then varying the assumptions about prevalence and costs.

In this Table 4, we allow the policymaker to make different assumptions about the
prevalence of COVID-19, and the costs and benefits of different errors and accurate
predictions. As can be seen from the “Risk cutoff” row, the range of selected cutoffs
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Base Prevalence Cost of FPFPFP Benefit of T NT NT N Cost of FNFNFN
Case H N NN H N H N H N

Best risk
cutoff R5 × R6 : R4 : R3 : R4 × R6 : R4 × R6 × R7 : R4

← . . . . . . . . . . . . . . . . . . . . . . . Vk . . . . . . . . . . . . . . . . . . . . . . .→
R1 -1.11 -1.23 -0.88 -0.4 0.4 -9.05 -1.72 4.1 -1.08 -1.2
R2 -0.40 -0.42 -0.38 -0.3 0.8 -6.68 -1.22 6.5 -0.36 -0.5
R3 1.20 1.40 0.80 0.0 1.7 -1.36 -0.08 12.1 1.26 1.0
R4 1.46 1.74 0.89 -0.2 1.8 -0.34 0.08 13.2 1.58 1.1

sκsκsκ R5 1.48 1.89 0.66 -1.0 1.7 0.26 13.7 13.7 1.75 0.8
R6 1.35 1.90 0.26 -1.9 1.5 0.33 -0.12 13.9 1.80 0.2
R7 0.78 1.75 -1.17 -5.1 0.9 0.26 -0.76 12.0 1.83 -2.0

← . . . . . . . . . . . . . . Cost and Benefit assumptions . . . . . . . . . . . . . .→
cFNcFNcFN 20 20 20 20 20 20 20 20 5 60
bT PbT PbT P 0 0 0 0 0 0 0 0 0 0
cFPcFPcFP 4 4 4 4 1 20 4 4 4 4
bT NbT NbT N 3 3 3 3 3 3 1 20 3 3
pCpCpC 20% 5% 40% 80% 20% 20% 20% 20% 20% 20%

Table 4: Risk stratification cutoffs depend on prevalence, costs and benefits

This table shows the differences in lowest permissible risk score policy,
given changes in prevalence, costs and benefits. Best risk cutoff is
the cutoff that minimizes harm. Below that score, individuals will be
considered “high risk” so the cutoff represents the worst acceptable risk
score for an individual to still be considered low risk, given the costs
and benefits (i.e., risk scores from that risk score up to R1 would be
labeled “low risk.”)
KEY:
N, H : a negative upward or downward change in the parameter
N, H : a positive upwards or downwards change
×, : : standards to became looser or tighter relative to the baseline.
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ranges from a fairly conservative R4, to the most aggressive R7 depending on the
assumptions made by the policymaker.

This variability may be seen as both a bug and a feature for clinicians.

On the one hand, Table 4 highlights the importance of having good information on
which to base policy. For example, if the true prevalence rate is higher than a pol-
icymaker believes, but she has no data on this, she will make policy decisions based
on the “bad” prevalence rate, but the policy will be executed in the world of the true
prevalence rate. In many cases, that difference will make a material differences in risk
cutoffs which in turn will affect which and how many workers are scheduled to return
to work at different points in time.

On the other hand, the Table also highlights the great flexibility that clinicians can
use in designing different risk stratification cutoffs for different demographics and job
types, since different cutoffs may be determined for each segment using different costs
and benefits in each case. We discuss this point in more detail in Section 3.4.

We have developed enough of the machinery on risk stratification to design a basic risk
stratification system and to decide which risk tiers are cleared to return and which are
not.

The basic algorithm is as follows:

Selecting a Risk Stratification Policy

1. Identify a test that can be practically administered in the target setting (e.g.,
that has costs and throughput speed that meet the needs of the application).

2. Determine T Pκ, etc., for each of the possible results of the test, making use
of the identities in Eqs. (1) - (4) as needed.a

3. Determine the appropriate cost and benefit functions for the community.b

4. Using the performance information from (2) and the cost and benefit informa-
tion from (3), calculate Vκ for each candidate stratification level, κ.

5. Use the cutoff risk level, κbest, that has the highest value of Vκ, for the test,
given the prevalence information and costs and benefits.

a Most FDA approved tests, for example, publish this information, while most good quality
quantitative models also disclose similar information.

b This is typically non-trivial and will form the core of a clinicians expertise. We discuss
this in more detail in Section 4.

3.2 Costs, benefits, and the Law of Risk-Based Decision Making 38 of 64



Where to draw the line for risk stratifications / R.M. Stein

3.3 Are more expensive tests worth the expense?

In addition to getting better information, and making more rational policies based on
that information, a policymaker may also, in some cases, have access to better quality
tests. However, given the large number of tests that a community may be required to
administer, it is reasonable for clinicians to analyze the value of more expensive vs. less
expensive tests.

Using the machinery of the previous section, a PM can evaluate this value explicitly.
This is done by calculating the best cutoff to use for each model, and then comparing
the values of Vk.

If the difference in the value of using the more expensive tests exceeds the additional
costs of those tests, a policymaker may be more likely to opt for the more expensive
tests.

Example 6. Deciding whether to purchase more expensive tests

Assume that a policymaker has access to two different COVID-19 tests with the per-
formance shown in Table 5. The policymaker needs to decide whether to mandate
use of the less expensive, less accurate test, or the more expensive, more accurate test.

Lower cost test Higher cost test
Risk level sκsκsκ T PT PT P FPFPFP T PT PT P FPFPFP
Lowest Risk R1 99% 62% 99% 60%

· R2 99% 49% 99% 50%
· R3 98% 20% 98% 19%
· R4 96% 14% 97% 10%
· R5 91% 10% 92% 9%
· R6 85% 8% 87% 6%

Highest Risk R7 65% 4% 70% 4%

Table 5: Performance of two different hypothetical COVID-19 diagnostic tools

This table shows the hypothetical performance of two tests for screen-
ing and risk stratifying individuals, based on the likelihood that they
are infected with COVID-19. For each test, T P and FP are the true
positive rates (correct high risk detection) and false positive rates (low
risk erroneously stratified as high risk), respectively. sκ is the candidate
cutoff.

We assume that the costs, benefits, and prevalence are:
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cFN = 20 ≡ cost of false negative (infected allowed in)
bT P = 0 ≡ benefit of true positive (correctly stopped infected)
cFP = 4 ≡ cost of false positive (non-infected is kept out)
bT N = 3 ≡ benefit of true negative (non-infected allowed in)
pC = 20% ≡ probability of COVID-19 (prevalence)%

All else equal, we can see by examining Table 5 that there is no cutoff that can be
chosen for which the less expensive test will perform better than the more expensive
one, since, at each cutoff, the T P rate is higher and the FP rate lower for the more
expensive test.

However to determine the whether the value of this difference is worth the expense,
the policymaker calculates the best cutoff for each test and compares these:

Less expensive test: Vk = 1.48 at cutoff R5
Less expensive test: Vk = 1.72 at cutoff R4

As expected, the more expensive test is more valuable (1.48 > 1.72). However, the
determination of whether or not the difference in value of 0.24 is substantial enough to
justify the added cost will depend on the policymaker’s assessment of the difference in
value and the difference in cost. (Note that here we deliberately avoid using specific
units to denominate the value, as each policymaker may use different calculations in
determining value. See Section 4.) ♦
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Application Template - Deciding whether to invest in better tests
and data

All calculations may be done on a hand calculator or simple spreadsheet. Example 6
can be used as a template.

To determine whether a proposed investment in additional resources is cost effective,
clinicians can use the templates developed so far, along with information on the
expected performance of each model to calculate value that would be realized if the
new investment were made.

In principle, this may be done using any scale for costs and benefits, however, it is
most easily done if the scale of the expense of the new test, and the scale of the
benefits and costs, are the same.

Input: Accuracy of current risk stratification approach
Accuracy of current risk stratification approach if investment made
prevalence of COVID-19
Cost under current approach of FN and FP
Cost under proposed new approach of FN and FP (if different)
Benefit under current approach of T N and T P
Benefit under proposed new approach of T N and T P (if different)

Result: “Optimal” risk stratification thresholds (cutoffs) for each approach
Relative (or absolute) value of new and current approaches

3.4 Flexible risk stratification policies for different needs across
communities

Recently there has been heightened interest in formulating strategies and policies that
would permit some “low risk” workers to return to work sooner than other “high risk”
workers. For example, (Stein et al., 2020) proposes a Total Harm Minimization frame-
work that prioritizes the timing of returning workers by both economic and health-risk
factors, as well as by the degree to which a worker may productively work remotely,
and thus continue to self-isolate if needed, during the first phases of the process.

Such strategies explicitly recognize that the risks faced by different segments of the
population vary considerably. For example, while two individuals may have similar age
and health profiles, if one of them has already been exposed to the novel coronavirus
and the other has not, the exposed individual may be at lower risk than the one who
has not been exposed.

Table 4 provided a preview of how clinicians can tailor risk stratification cutoffs to
different situations. In the next example, we allow a policymaker to assume that for
certain functions returning to work urgent than it is for others, and that keeping certain
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employees away from their place of employment may be more or less costly than it is
for others.

Example 7. Fact-based, flexible risk stratification for returning to
the workforce

In this example, we consider a policymaker who is working towards bringing as many
workers back into the workforce as possible, without undertaking unreasonable risk
to the public.

The policymaker has consulted his economic advisors, and together the team has
determined which industries are more critical to the region than others and which
workers may work from home for a longer period with less loss to the economy and
low health risks.

Furthermore, new serology tests now permit the identification of individuals who
are expected to have acquired immunity because they have either been confirmed to
have had COVID-19 and have recovered, or because they tested positive for protective
antibodies. (We assume here that the scientific community has guided the policymaker
in this regard.)

The group also has access to a fairly accurate test that can be used assign initial
risk grades to individual workers. The performance of the test is known. as well as
the effective accuracy and error rates for that procedure. (For convenience in this
example, we assume that this test has the same accuracy, etc. as the one we have
been using in the last example.

What remains is for the policy group to draft the costs and benefits associated with
different policies. However, rather than draft a one-size-fits-all cost function, the group
takes advantage of the work it has done with economic advisors and medical profes-
sionals and creates a set of cost functions that can be used with different segments of
the workforce, depending on their characteristics. Table 6 shows the result.

The table shows how different segments of the population could be triaged for return-
ing to work. As the risks and costs go down, or the benefits go up for a worker’s
return, the worker is given a more lenient threshold for returning to the workforce.

For example, the cost of keeping a worker who can work from home is much lower
than the cost of keeping a worker at home who cannot work from home. In this case,
the first worker who can work remotely would be permitted to return to work only
with a relatively good test score of (low risk tier) R4 or better (i.e., R1 - R4. In
contrast, the policy would take more risk in the case of the worker who can only work
at his place of business. This worker would be allowed back with a much poorer risk
score of R7 (i.e., any risk score from R1-R7). ♦
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Base Recent exposure Can work remotely Industry Immunity
Case No Yes No Yes Critical Non-critical Yes No

Best risk
cutoff R5 × R6 : R3 × R6 : R4 × R6 ×R4 × R7 R5

← . . . . . . . . . . . . . . . . . . . . . . . . . . . Vk . . . . . . . . . . . . . . . . . . . . . . . . . . .→

st
ric
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R1 -1.11 -1.23 -0.66 -9.05 0.97 2.54 -1.72 -1.33 -1.11
R2 -0.40 -0.42 -0.35 -6.68 1.36 4.49 -1.22 -0.43 -0.40
R3 1.20 1.40 0.40 -1.36 2.27 8.88 -0.08 1.59 1.20
R4 1.46 1.74 0.33 -0.34 2.37 9.71 0.08 2.01 1.46
R5 1.48 1.89 -0.16 0.20 2.27 10.12 0.04 2.29 1.48
R6 1.35 1.90 -0.82 0.33 2.05 10.18 -0.12 2.43 1.35
R7 0.78 1.75 -3.11 0.26 1.26 9.99 -0.76 2.71 0.78

← . . . . . . . . . . . . . . . . . . Cost and Benefit assumptions . . . . . . . . . . . . . . . . . .→
cFNcFNcFN 20 20 20 20 20 20 20 H0 20
bT PbT PbT P 0 0 0 0 3 0 0 0 0
cFPcFPcFP 4 4 4 N20 H1 4 4 4 4
bT NbT NbT N 3 3 3 3 3 N15 H1 3 4
pCpCpC 20% H10% N60% 20% 20% 20% 20% H0% 20%

Table 6: A flexible back-to-work policy based on information on economic and health risks

This table shows how the same test may be used to risk stratify differ-
ent groups of workers for prioritizing back-to-work stages for different
health and economic profiles. This is done by adjusting the costs, ben-
efits and prevalence. The hypothetical factors are only considered in
isolation here, but a more robust approach would consider combina-
tions. Best risk cutoff is the cutoff that minimizes harm. Below that
score, individuals will be considered “high risk” so the cutoff represents
the worst acceptable risk score for an individual to still be considered
low risk, given the costs and benefits (i.e., risk scores from that risk
score up to R1 would be labeled “low risk.”)
KEY:
N, H : a negative upward or downward change in the parameter
N, H : a positive upwards or downwards change
×, : : standards to became looser or tighter relative to the baseline.
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Application Template - Determining a flexible risk stratification
policy (Intermediate)

All calculations may be done on a hand calculator or simple spreadsheet. Example 7
can be used as a template.

To develop a more flexible risk stratification policy that permits different segments
to be evaluated differentially using segment-specific criteria, the basic approach dis-
cussed in Section 3.1 may be used with parameters tailored to each subgroup’s
specific roles and health characteristics.

Input: Accuracy of risk stratification approach
Prevalence of COVID-19 for each subgroup
Cost for each subgroup of T N and FP in context of community
Cost for each subgroup of of T N and FP...
Benefit for each subgroup of T P and FP...

Result: Risk stratification policy for each subgroup enabling looser/tighter risk
as warranted by the community’s needs

3.5 Unified risk stratification: incorporating disparate types of
tests

Example 8. Incorporating different kinds of tests into a single policy

In this final example, consider a policymaker who has decided on the appropriate costs
and benefits for each community but must rely on a variety of tests, depending on the
test availability and capabilities at different testing facilities.

Imagine that there is a virology test that has fairly high accuracy, but which is only
available in limited supply. Because of the limited supply, only about 10% of the
community will be able to be tested using it. A second virology test, which is not
as accurate, will be available for about a third of the remaining community. a small
percentage of the of the community can be screened with a predictive model developed
with machine learning techniques that has good accuracy, but which is only applicable
to small subsets of the general population. For the remainder, a less accurate simple
heuristic test will be administered (e.g., based on an individual’s age and whether
they live alone or with others).

For simplicity, we assume that the costs and benefits are the same in all regions of
the community:
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cFN = 20 ≡ cost of false negative (infected allowed in)
bT P = 0 ≡ benefit of true positive (correctly stopped infected)
cFP = 4 ≡ cost of false positive (non-infected is kept out)
bT N = 3 ≡ benefit of true negative (non-infected allowed in)
pC = 20% ≡ probability of COVID-19 (prevalence)%

The tests’ results use different scales, which range from having seven risk tiers to
having just two, and the quality is variable across the tests and between grades.
Table 7 displays the performance for each test.

Higher Lower Low Machine
accuracy accuracy accuracy Learning

Risk viral test viral test heuristic test predictions
level sκsκsκ T PT PT P FPFPFP T PT PT P FPFPFP T PT PT P FPFPFP T PT PT P FPFPFP

Low Risk R1 99% 60% 95% 18% 60% 11% 93% 24%
· R2 99% 50% 85% 14% - - 90% 18%
· R3 98% 19% - - - - 85% 14%
· R4 97% 10% - - - - 73% 10%
· R5 92% 9% - - - - 65% 8%
· R6 87% 6% - - - - - -

High Risk R7 70% 4% - - - - - -

Table 7: Performance of two different hypothetical COVID-19 diagnostic tools

This table shows the performance of four different hypothetical tests
for stratifying individuals into risk tiers, based on the likelihood that
they are infected. T P and FP are true positive rates (correct high
risk) and false positive rates (low risk erroneously stratified as high
risk), respectively. The rows in bold indicate the test’s performance
at their best cutoffs, given the costs and benefits described in the
example. This is the cutoff that minimizes harm. Below that score,
individuals will be considered “high risk” so the cutoff represents the
worst acceptable risk score for an individual to still be considered low
risk, given the costs and benefits (i.e., risk scores from that risk score
up to R1 would be labeled “low risk.”).

The policymaker would like screen as many individuals as possible using whatever tests
are available. However, they are concerned that the test all have different performance
and that each also use a different number of risk tiers to report test results. Table 7
makes it clear that an “R1” from one test does not communicate the same information
about the probability of an individual being infected with COVID-19 as another, and
thus two “R1” risk tiers cannot be compared directly.

However, given the scarcity of tests, the policymaker must find a way to use whatever
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tests they can offer to community. Said differently, they need to integrate all of the
disparate tests into a single scale.

To do this, the policymaker can first determine the best cutoff for each test, and then
determine the probability that an individual who is screened has COVID-19.

This transformation may be done using the techniques developed earlier. In particular,
using either Equation (C.2)) or Equation (C.8), each tests’ performance at its best
cutoff can be mapped to a probability, and the probabilities can then be directly
compared.

Table 8 shows the result of performing these calculations for each test.

Probability of
COVID-19 infection if... Healthy but...
...test result ...test result ...test result
is negative is positive is positive T P FP

Viral test - H (R4) 0.8% 70.8% 11.0% 97% 10%
Viral test - L (R2) 4.2% 60.3% 15.6% 85% 14%
ML test (R3) 4.2% 60.3% 15.6% 85% 14%
Heuristic test (R1) 10.1% 57.7% 11.1 60% 11%

Table 8: Converting to probabilities to compare individuals tested with different tests [Equation (??), (C.8)]

This table shows how individuals tested using four different types
of tests, each with different performance and each with a different
scale, can be compared and integrated into a single coherent policy
for risk stratification. The tests are a higher accuracy virology test, a
lower accuracy virology test, a heuristic rule, and predictive algorithm
developed using machine learning (ML) techniques; the best cutoff for
each test is shown in parentheses after the test name. T P and FP
are true positive rates (correct high risk) and false positive rates (low
risk erroneously stratified as high risk) , respectively. The columns in
bold show the percentage of negative (positive) results for which a the
subject was actually COVID-19 infected (healthy), and thus increased
the total harm for the community.

The results in Table 8 illustrate a number of useful points. First, note that the
hypothetical high accuracy viral test dominates all other tests in terms of stratification,
with uniformly lower percentages of erroneous risk scores for both healthy and infected
individuals. If it were possible to use only that test, the reduction of harm would be
substantial.

Second, notice that two of the tests, the lower accuracy viral test and the test devel-
oped using machine learning, produced identical performance, even though they used
different methods and different scales. Thus, under theses assumptions about costs
and incidence, the policy should treat results of the the tests as equivalent, when their
best cutoffs are used.20

20 This is not strictly true for a variety of reasons. For example, the variance of the estimates may be
different, etc.
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Finally, the “mislabeled” rates in the two bold columns appear to show three distinct
risk stratifications: high (around 10% risk of COVID-19 infection), medium (about
4%) and low (about 1%).

Furthermore, the actual risk grades can now be used to calculate other quantities of
interest, such as the expected number of new cases, under the policy and so forth.

Note also that, were the policymaker to move to an entirely probability-based scoring
system, there would no longer be a need to create cutoffs at all: each risk grade in
each test’s scale can be mapped directly to a probability and these probabilities can be
used to manage the staging of the return more effectively (see, Section 4).

Application Template - Integrating disparate risk stratification
methods in a single policy

All calculations may be done on a hand calculator or simple spreadsheet. Example 8
can be used as a template.

Example applications:

• Map all testing protocols and tests to a unified risk stratification scale

• Map test results to probabilities of exposure, morbidity, mortality, etc.

• Calculate, e.g., expected number of new cases under policy, etc.

• Create a single risk stratification policy that can be used irrespective of any
current or new tests that are selected by the policymaker.

• Use as input to more advanced risk management approaches that consider
clustering of incidence (not discussed here)

Input: Accuracy of each risk stratification approach
Prevalence of COVID-19 for the community
Cost of T N and FP in context of community
Cost of T N and FP...
Benefit of T P...

Result: A common probability scale for directly comparing and ordering the results
of all testing approaches that may be in use; quantitative information that
can be used to manage and monitor staging.
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4 Discussion

There are a number of open issues and extensions that may be considered to the basic
framework we outlined in Section A. Here we discuss two of these: coming to terms
with how best to intentionally assign cost and benefit values (rather than doing so
unintentionally by implication), and potential improvements that allow more precise
and customized risk stratifications.

4.1 The difficulty in assessing costs and benefits

In this paper, we have assumed that clinicians are able to explicitly state approximate
values for cost and benefits. This is extremely challenging and, realistically, may only
be possible very coarsely. In the case of novel coronavirus, this assessment is made
more complicated by several factors, including:

• generally poor data on true prevalence, contagion rates, mortality rates, hospital
admission rates (given infection), ICU admission rates (given hospitalization),
etc. Without better data on these parameters and others, it will be exceedingly
difficult to properly form policy.;

• complexity in both the pathology and evolution of the novel coronavirus, and
how these are impacted by interventions, prior medical histories, genotype and
phenotype information, etc.

• complexity in relating epidemiological phenomena to economic phenomena;

• complexity in understanding supply chain dynamics, and the many interrelation-
ships between different economic sectors (e.g., retail and trucking), as well as the
degree of modularity in any particular business or industry, and how these relate
back to individuals.;

• the need to execute short-term policy within the context of long-term economic
and health planning objectives

It is both outside of our knowledge and beyond the scope of the current paper to un-
dertake this analysis in any detail for any specific case. Indeed such decisions require
information on the economic and health impacts of different outcomes within a commu-
nity, as well as information on the demographics of the population. These analyses also
require a normalization and prioritization of outcomes that are measured on different
scales, such as the health costs of self-isolation vs. the risk of overloading hospitals vs.
the cost to the community and individuals of lost wages and economic output.

However, these need not be exceedingly refined or comprehensive in some cases. It
may be the case, for example, that clinicians, economists, and health officials can easily
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agree on the extreme cases, and then work backwards using, e.g., a point system for
different costs and benefits.

Examples of costs and benefits could include a wide variety of global, national and local
factors. Table 9 provides examples of some of the hypothetical factors that might go
into a discussion with health and economic policy advisors while formulating a policy.

In some settings, decision makers can agree more easily on relative value than on ab-
solute levels. In such cases, valuing factors in terms of points, rather than dollars and
health outcomes may be more tractable. This is particularly so given the complexity,
co-dependence, and tight coupling of the systems and actors in question.

Hypothetical examples of...

...potential costs of
erroneously keeping uninfected
people isolated (cFPcFPcFP)

...potential benefits of getting
uninfected people out of
isolation (bT PbT PbT P )

...potential costs of
erroneously returning infected
people to population (cFNcFNcFN )

N psychological illness N economic output N infection rate
H economic participation N ability to care for others N hospital loads
N expenses N national security N spread of COVID-19
N food/medical insecurity N services and product availability N mortality due to COVID-19
N domestic abuse N resources for community support N reduced health svcs. access
N disruption of supply chain N quality of life H resilience of community
N lifestyle-related morbidity N lifestyle-related health H prolonged population lock-down
etc. etc. etc.

Table 9: Some hypothetical factors for discussing a return-to-work policy. (Example only)

This table shows some of the dimensions that clinicians might consider
in a hypothetical discussion of return-to-work policy construction. It is
intended as an example only. The actual dimensions will differ and be
weighted differently in various real settings. (N, Hindicate a negative
increase or decrease as the result of an error; N indicates a positive
increase as the result of a benefit.)
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4.2 Risk stratification without cutoffs: More refined tests min-
imize harm

While cutoffs can be chosen by clinicians to maximize overall benefits to a community
these are only “best” when the options are restricted to designating a single cutoff. If
the clinicians and the community have access to more refined tests, these may be used
to create much more flexible screening procedures.

In such cases, particularly if the test is calibrated to produce a continuous scale and can
be calibrated to produce probability estimates, a policy can be designed to accommo-
date a wide range of individual situations. This permits highly customized assessments
of specific sub-populations, and even of individuals.

Furthermore, such tools can be explicitly designed to incorporate multiple dimensions
of risk (e.g., age AND health status AND recent exposure, etc.) rather than assessing
each independently, as in Example 7. Doing this allows risk stratification to be informed
by a fuller picture of the individual or sub-population, and also reduces double-counting
substantially.

It can be shown (Stein, 2005) that such approaches are generally superior to simple
cutoff-based approaches. Furthermore, as better empirical data on COVID-19 becomes
available, this type of more refined analysis and prediction is likely to become increas-
ingly available.

The question of how to best determine a scale and to then calibrate involves a number
of dimensions and may be done in several ways, each offering different advantages and
limitations, depending on the applications (see, (Bohn and Stein, 2009, , Chapter 4)
for a discussion.

5 Conclusion

In this note we have tried to provide guidance for clinicians on ways to make more
informed decisions as part when developing risk stratification approaches for bringing
individuals back to work and the general public prior to the introduction of an effective
vaccine for COVID-19.

Our discussion was framed in this context and our examples focused on COVID-19
entirely. However, the techniques we used in this context are general, as are their
mathematical formulations.

These general techniques can provide a grounding in facts and science for clinicians to
draw on in evaluating the challenging policy decisions that now face many national and
local governments.
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These methods perform better with more accurate data, and as a result, they can also
help clinicians understand how best to collect this information, and up until what point
the benefits of data collection continue to outweigh the costs.

Finally, the methods are flexible and can be readily adapted to local needs, using
whatever information is available.

Many discussions of policy were initially focused on emergency tactics to prevent health-
care systems and communities from being overrun with COVID-19 outbreaks. As these
discussions now turn towards longer-term strategies to manage how communities might
start to return to more “normal” activities, when the threats of COVID-19 begin to
abate, we hope that this type of analysis will inform better, more effective, and less
costly policies for total harm minimization.
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A Appendix: Setting a policy cutoff

Assume that there is a set of benefits and costs that we can calculate for a correctly and
incorrectly stratifying an individual.21 Denote these costs and benefits as follows:

bT N ≡ benefit of correctly stratifying a disease-free individual as low-risk
bT P ≡ benefit of correctly stratifying of an infected individual as high-risk
cFN ≡ cost of incorrectly stratifying of an infected individual as low-risk
cFP ≡ cost of incorrectly stratifying of an disease-free individual as high-risk

Imagine further that the diagnostic produces a score, si for each individual, that ranges from s1
(“lowest risk”) through sK highest risk. This score could be the propensity score of a machine
learning algorithm, the concentration level (cp/µL) of SARS-CoV-2 detected using an assay, a
person’s age, etc.

The goal of the policymaker is to determine the score cutoff κ to use for stratifying the risk
of the population into “high risk” (scores higher than κ) and “low risk” (scores lower than κ).
Without a loss of generality, let k be the percentile of sκ in the population. 22 Because the
diagnostic is not perfect, any κ selected other than s1 or sK will produce accuracy and error
rates T N k, T Pk,FN k and FPk.

Given this information, the total value of a policy, Vk, that uses this diagnostic with the cutoff
k is:

Vk = p∗F [bT N × T N k − cFP ×FPk] + p∗C [bT P × T Pk − cFN ×FN k] , (A.1)

where, as before, p∗C and p∗F are the true prevalence and one minus the true prevalence, respec-
tively.

This is simply the weighted net value of a correct vs. incorrect classification of an individual
as low risk plus the weighted value of a correct vs. incorrect classification of an individual as
high risk. The the weighting is done based on the probability of being virus-free or infected
and the probability of being correct or incorrect depends on the model accuracy (T Pk, etc.).

In order to maximize the value (equivalent to minimizing the negative value) we can Vk to
zero, differentiating with respect to k and rearrange terms. This gives the slope of a line with
marginal cost equal to zero.

This gives:

21 It is beyond the scope of this note to discuss the many factors that must go into such determinations.
However, regardless of whether clinicians explicitly make these calculations or not, by the Law of Risk-
Based Decision Making the costs and benefits will be implied in any risk stratification policy.

22 For completeness, k = #{si < κ}/N, i = 1...N , where N is the size of the total population and #{x} is
the count of the number of cases in which x is true.
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S =
(1− pC)× [cFP + bT N ]

pC × [cFN + bT P ]
.

The point at which a line with slope S, as defined above, forms a tangent to the ROC curve
for a stratification method, defines optimal cutoff, given a particular set of costs and benefits:
this point will be the one at which marginal payoffs (costs) are zero. (Green and Sweats, 1966)
provides a discussion of this approach and an analytic formulation of the problem as applied
to ROC analysis.

The goal of the policymaker is to maximize the value of the policy, which is done by selecting a
value of k that maximizes Vk. This may be done graphically using ROC curves or analytically,
as above. (see: (e.g., Stein, 2005) for details and exertions).

As noted earlier, for real-world problems involving risk stratification systems that may have
a variety of attributes, and for which there may only be a small number of potential cutoff
values, it may be convenient to calculate T Pk,FPk, etc. for the range of k values, and to then
use the cutoff that results in the maximum value of Vk.

B Appendix: A general analytic result using Bayes’
Rule

Bayes’ Theorem gives:

p(A | B) =
p(B | A)p(A)

p(B)
, (B.1)

where, as usual,

p(x) : the probability of event x occurring; and
p(x|y) : the probability of event x occurring given that y is observed.

For more involved calculations, we note that the chain rule permits calculation of joint proba-
bilities based on their conditional products:

p(An, . . . , A1) = p(An|An−1, . . . , A1) · p(An−1, . . . , A1). (B.2)

For example, if we were worried about spreading the novel coronavirus at a press conference,
but also worried about restricting reporters’ access to the press conference, we might consider
screening each reporter as they enter briefing room. In this case, we would be concerned about
infected individuals entering the briefing room and possibly infecting others. If we wished to
determine the probability that an individual had COVID19, given that she got a negative test
result, N , Equation (B.1) becomes:
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p(COVID-19 | N ) =
p(N | COVID-19)× p(COVID-19)

p(N )
.

If there were nT total test given, (negative test result, N indicating no COVID19 and positive
result P indicating COVID-19 present), Equation (B.1) becomes:

p(COVID-19 | N ) =
(nCN /nC)× (nC/nT )

(nN /nT )
. (B.3)

where

nC ≡ total number of COVID-19 infected individuals
nW ≡ total number of individuals tested who are well (no COVID19)
nT ≡ total number of individuals tested = nC + nW

nP ≡ total number of individuals who test positive
nN ≡ total number of individuals who test negative
nCP ≡ total number of individuals with COVID-19 who test positive
nCN ≡ total number of individuals with COVID-19 who test negative

which (of course) simplifies to

p(COV ID19 | N ) =
nCN
nN

≡ FN . (B.4)

The false positive rate may be calculated similarly.

It is useful at times to recall that T P,FP, etc. do not depend on pC, the incidence rate. (See
Appendix D for a proof.)
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C Appendix: Calibrating the probability of a COVID-
19 infection as new information arrives

In some cases, we can make simple adjustments, using the Bayesian framing, in order to
adjust for differences between the noisy population prevalence estimates and (perhaps new)
true population prevalence to better characterize the effectiveness of a diagnostic or model. In
the simplest case, a straightforward adjustment to the “bad” probability, using a new “better”
estimate of prevalence may suffice (see, e.g., Bohn and Stein, 2013; Khozin and Stein, 2020,
for details).23

It can be shown, for example, that absent systematic selection bias (see: footnote 23).

One such fix-up is:

p(S | R)tru ≡ ptruSR = ptruS

[
pbadSR ×

[
1− pbadS

]
pbadS − (pbadS × pbadSR ) + (ptruS × pbadSR )− (ptruS × pbadS )

]
. (C.1)

where

S ≡ the true disease status ( COVID-19 or well)
R ≡ the result of the diagnostic test P or N
pS ≡ the true prevalence of S

ptrux ≡ is the correct estimate of the probability of x if correct data were used
pbadx ≡ is the bad estimate of the probability of x using unreliable data, and
pSR ≡ p(S | R).

So, for example, the true probability of a person who tested positive actually having COVID-19,
can be computed from an estimate, pbadCP , that was originally made based on unreliable data:

p(COVID-19 | P)tru ≡ ptruCP = ptruC

[
pbadCP ×

[
1− pbadC

]
pbadC − (pbadC × pbadCP ) + (ptruC × pbadCP )− (ptruC × pbadC )

]
.

(C.2)

The above equations can only be used in certain special settings, we introduce them
here only to demonstrate the magnitude of the impact that unreliable data may have on a risk
stratification, and because certain intermediate results of the proof24 are useful for calibration.

23 The adjustment shown here assumes that there is no systematic sampling bias, i.e., that the actual
missing cases are MCAR. Clearly, in the case of the COVID-19 testing discussed here, this is not the
case. However, in such settings, more detailed analysis may also be used to adjust probabilities (see, e.g.,
Khozin and Stein, 2020, and references therein).

24 Much of the proof of this result follows closely a version given in (Elkan, 2001), though the one given
here contains more of the details, and contains extensions.
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Proof of Eq. (C.2)

We begin with Equation (B.1):

p(A | B) =
p(B | A)× p(A)

p(B)
,

from which it also follows that,

p(B | A) = p(A | B)× p(B)

p(A)
. (C.3)

For convenience, let

p(A | B) = p(COVID− 19 | P) ≡ pCP , and
p(B | A) = p(P | COVID− 19) ≡ pPC.

pCP =
pPC × pC

pP

and let pW = 1− pC be the probability of not having COVID-19 (being well), and

pP = pC × pPC + pW × pPW
= pC × pPC + (1− pC)× pPW

(C.4)
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If our estimate of pC is based on a “bad” estimate, then, pCP will also be “bad.” Using the
notation above, the erroneous (“bad”) estimate of pCP , pbadCP , is then:

pbadCP =
pbadPC × pbadC

pbadP

=
pbadPC × pbadC

pbadC × pbadPC + (1− pbadC )× pbadPW

=
pbadC

pbadC + (1− pbadC )× θ
(C.5)

where θbad = pbadPW/p
bad
PC . Note that because θ is equivalent to FP/T P, it does not depend on

pC (see, Appendix D), and therefore

θbad = θtru = θ,

so we also have
ptruCP =

ptruC
ptruC + (1− ptruC )× θ

, (C.6)

where the superscript tru indicates the true value of the parameter, which is the equivalent to
Equation (C.5), but using the good estimate ptruC .

Although theta does not depend on pC, pbadCP and ptruCP do depend on pbadC and ptruC , respectively.
Thus, in order to accomplish the adjustment, we can solve for θ in terms of pbadCP . This gives

θ =
pbadC × (1− pbadCP )

pbadCP × (1− pbadC )

=
pbadC − (pbadC × pbadCP )

pbadCP − (pbadCP × pbadC )
(C.7)
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Plugging Equation (C.7) back into Equation (C.6) gives

ptruCP =
ptruC

ptruC + (1− ptruC )× pbad
C −(pbad

C ×pbad
CP )

pbad
CP −(p

bad
CP ×p

bad
C )

,

=
ptruC

ptruC + (1− ptruC )× pbad
C ×(1−pbad

CP )

pbad
CP ×(1−p

bad
C )

,

=
ptruC × pbadCP × (1− pbadC )

pbadC + (pbadCP × ptruC )− (ptruC × pbadC )− (pbadC × pbadCP )
,

= ptruC

[
pbadCP × [1− pbadC ]

pbadC +−(pbadCP × pbadC ) + (ptruC × pbadC )− (ptruC × pbadC )

]
.�

Importantly, because θ is a the ratio FP/T P does not involve pC, Equation (C.2) may be
simplified substantially if we know the performance (FP and T P) of the test, which can be
convenient:

ptruCP =
ptruC

ptruC + (1− ptruC )× FPT P
, (C.8)

since any specific test result will be associated with a specific FP and T P, which, in turn,
will result in a specific probability estimate(see, Appendix sec:bayes). For tests that produce a
range of test values, any specific test value will still have a specific FP and T P and resulting
probability associated. (See Figure 3).
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D Appendix: Proof that T P (and FP ,FN , T N ) do
not depend on the prevalence pC

We wish prove that T P and T N do not depend on pC. It is sufficient to prove that T P.

We begin by proving that T P = 1−FN .

T P = p(P | C) =
p(C | P)× pP

pC

=
nCP
nP
× nP

nT

nC
nT

=
nCP
nP
× nP
nT
× nT
nC

=
nCP
nC

=
nC − nCN

nC

=
nC
nC
− nCN

nC

= 1−FN . �

It can similarly be shown that

T N = 1−FP.

It now remains to show that that T P does not depend on pC, which, by exertion of the first
proof, establishes the result for FN , T P and FN as well.

60 of 64



Where to draw the line for risk stratifications / R.M. Stein

T P =
nCP
nC

,

nCP = nC × nT

nCP = (pC × nT )× T P.

Now let pnewC be an alternative value of pC such that

pC
pnewC

= λ.

pnewC = λ× pC (D.1)

nnewC = λ× pC × nT

= λ× nC (D.2)

Now

nnewCP = pnewC × nT × T P.

= λ× pC × nT × T P.

nnewCP = λ× nCP (D.3)

The new value of T P, T Pnew is the value of T P based on the new prevalence rate pnewC :

T Pnew =
nnewCP
nnewC

, (D.4)

Substituting Equation (D.2) and (D.3) into Equation (D.4) gives

T Pnew =
nnewCP
nnewC

T Pnew =
λ× nCP
λ× nC

= T P. �
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E Risk StratificationWorkbench: Staging, cutoff, and
policy evaluation

In order to facilitate education regarding the techniques discussed in this article, we have imple-
mented a web-based tool called Risk Stratification Workbench for performing these analyses.25

Risk Stratification Workbench is publicly available at no charge, and can be found at:

http://www.rogermstein.com/covid-19-resources/.

Risk Stratification Workbench is intended to be used in conjunction with this article, however,
the following two pages provide a “Cheat Sheet” for quick reference.

25 Although the software is available at no cost, some caveats are in order: This software is only intended
for educational purposes and there is no express or implied warranty regarding the use of this tool or
its outputs. Although we believe the code to be free of errors, the user should note that the accuracy
of the software and results are not guaranteed, and the applicability of the analysis may or may not be
appropriate for any specific purpose. In light of this, any decisions that may or may not result from
the use of this software are the responsibility of the user. (Also note, that the author has no medical
training.)
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